Bounds on orthogonal polynomials and separation of their zeros

نویسندگان

چکیده

Let ${ p\_{n}}$ denote the orthonormal polynomials associated with a measure $\mu$ compact support on real line. be regular in sense of Stahl, Totik, and Ullmann, $I$ subinterval which is absolutely continuous, while $\mu'$ positive continuous there. We show that boundedness $% { closely related to spacing zeros $p\_{n}$ $p\_{n-1}$ interval. One ingredient proving “local limits” imply universality limits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for Extreme Zeros of Quasi–orthogonal Ultraspherical Polynomials

We discuss and compare upper and lower bounds obtained by two different methods for the positive zero of the ultraspherical polynomial C n that is greater than 1 when −3/2 < λ <−1/2. Our first approach uses mixed three term recurrence relations and interlacing of zeros while the second approach uses a method going back to Euler and Rayleigh and already applied to Bessel functions and Laguerre a...

متن کامل

Zeros of Polynomials Orthogonal on Several Intervals

Let a1 < a2 < . . . < a2l, Ej = [a2j−1, a2j ], put E = ⋃l j=1 Ej and H(x) = ∏2l j=1(x − aj). Furthermore let pn(x) = x + . . . be the polynomial of degree n orthogonal on E with respect to a weight function of the form w/ √ −H with square root singularities at the boundary points of E and w ∈ C(E). We study and answer the following questions: how many zeros has pn in the interval Ej , j ∈ {1, ....

متن کامل

On extreme zeros of classical orthogonal polynomials

Let x1 and xk be the least and the largest zeros of the Laguerre or Jacobi polynomial of degree k. We shall establish sharp inequalities of the form x1 < A, xk > B, which are uniform in all the parameters involved. Together with inequalities in the opposite direction, recently obtained by the author, this locates the extreme zeros of classical orthogonal polynomials with the relative precision,...

متن کامل

On Orthogonal Polynomials with Regularly Distributed Zeros

In this case the points 0k,, = are sin xkn are equidistributed in Weyl's sense . A non-negative measure da for which the array xkn (da) has the distribution function fl o(t) will be called an arc-sine measure . If du(x) = w(x) dx is absolutely continuous, we apply, replacing dca by w, the notations pn(W,x), yn (w), xkn(w) and call a non-negative w(x) an arc-sine weight if da(x) = w(x) dx is an ...

متن کامل

Multiplicity of Zeros and Discrete Orthogonal Polynomials

We consider a problem of bounding the maximal possible multiplicity of a zero of some expansions ∑ aiFi(x), at a certain point c, depending on the chosen family {Fi}. The most important example is a polynomial with c = 1. It is shown that this question naturally leads to discrete orthogonal polynomials. Using this connection we derive some new bounds, in particular on the multiplicity of the ze...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of spectral theory

سال: 2022

ISSN: ['1664-039X', '1664-0403']

DOI: https://doi.org/10.4171/jst/408